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Nonlinear Couette flow in a dilute gas: Comparison between theory
and molecular-dynamics simulation
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Nonlinear transport properties ofdzdimensional dilute gas subjected to a planar Couette flow are deter-
mined. The results are obtained from a kinetic model that accounts for the correct value of the Prandtl number.
The solution is characterized by constant pressure and linear velocity and parabolic temperature profiles with
respect to a scaled variable. The main transport coefficients are explicitly obtained as nonlinear functions of the
reduced shear rate. A comparison with recent molecular-dynamics simulations of a bidimensional gas of hard
disks[D. Risso and P. Cordero, Phys. ReVv5& 489(1997)] is carried out. Such a comparison shows that our
results are in better agreement with the computer simulations than those previously derived from other ap-
proximations, especially in the case of the thermal conductivity tefSa063-651X98)03308-X]

PACS numbegps): 05.20.Dd, 47.50td, 51.10+y, 05.60+w

[. INTRODUCTION ficients by using a perturbation expansion in powers of the
shear rate up to the super-Burnett approximation. Moreover,
The Boltzmann equation provides an adequate frameworkery recently Risso and Cordef6] have explicitly evalu-
to analyze transport phenomena occurring in dilute gase&tedn and in the case of a 2D gas of hard disks by apply-
The standard method of solving it is the Chapman-Enskodnd Grad's method to the Boltzmann equation. Beyond the
series expansion in gradients of the hydrodynamic fieldsNavier-Stokes regime, they found that these coefficients turn
Nevertheless, this approach is not very useful when one deaf!t to be highly nonlinear functions of tHeimensionless
with far from equilibrium situations for which, due to the shear rat_e. _In addition, and in order to validate their analyti-
complexity of the Boltzmann collision term, it is a formi- €@ predictions, they have also performed molecular-

dable task to find exact solutiorfd]. This problem has dynamics S|mulat.|ons. The comparison shows good agree-
imatdent for the nonlinear shear viscosity in the range of shear

schemes to overcome the above difficulties. In the context O@tes considered while the discrepancies become important in

analytical methods, the use of kinetic modit} as well as the case of the thermal conductivity tensor, especially when

: . . the shear rate is large. Given this fact, a natural question is
Gr_aq s mO”?e”‘ expansion meth{# can be cons_ldered whether the above analytical predictions could be improved
priori as reliable procedures to study such nonlinear ransg jne uses a suitable kinetic model.
port problems. However, |'_[ is not evident which approximate  Tne aim of this paper is to analyze the transport properties
scheme should be used in each case. As a complementagy the Couette flow state by starting from the so-called ellip-
tool to analytical methods, one can getmiexperimentale-  gpjdal statisticalES) kinetic model[6]. In this model, the
sults from microscopic computational techniques usingBoltzmann collision term is replaced by a simpler one
molecular-dynamics and/or Monte Carlo simulations. J[f,fl—v(fo—f ), wheref, is an anisotropic Gaussian that

One of the most interesting problems for which the exacinvolves the pressure tensor and the Prandtl number Pr. This
solution of the Boltzmann equation is not known is thequantity can be considered as an extra parantagert from
steady planar Couette flow. It corresponds to a gas betweehe collision frequency) to be adjusted to give the same
two parallel plates in relative motion and kept, in general, afNavier-Stokes transport coefficients as those obtained from
different temperatures. These boundary conditions lead tthe Boltzmann equation. That happens i=Fr in the 3D
combined heat and momentum transport so that the relevashse or P+ 3 in the 2D casd6]. Besides, if P=1, one
fluxes are the pressure tenddrand the heat flux vecta. recovers the well-known Bhatnagar-Gross-Kro@RGK)
From the knowledge of the above fluxes, one can identify thenodel[7], so that the latter can be considered as a particular
main transport coefficients of the problem, namely, the sheatase of the ES model. The goal is to solve the ES model for
viscosity coefficientp and the nonzero elements of the ther- a d-dimensional system subjected to the planar Couette flow.
mal conductivity tensok. In the context of the Boltzmann This study extends previous results obtained in the Couette
equation and for a three-dimension@D) gas of Maxwell  flow for the 3D case by using the ES mod#l. Now, our
molecules, Tij and Santdgl] have obtained the above coef- main motivation is to compare the results derived from the

ES and BGK models and from Grad’s solution with those

obtained in the Boltzmann equation from a perturbation ex-
*Electronic address: jnm@unex.es pansion(3D casg [4] and from molecular-dynamics simula-
"Electronic address: vicenteg@unex.es tions for hard disk$5]. This comparison allows one to infer
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the degree of reliability of thenonlinear transport coeffi- The ES model can be seen as an extension of the simple
cients obtained from the different approximations. BGK model to account for the correct Prandtl number. This
The plan of the paper is as follows. In Sec. Il we solve thecan be particularly important in situations where combined
ES model in the steady planar Couette flow. We provideheat and momentum transport occur, as it is the case of
explicit expressions of the relevant transport coefficients okteady Couette flow. In the ES model, it is straightforward to
the problem in terms of the shear rate, the thermal gradiengvaluate the Navier-Stokes transport coefficients, namely,
the dimensionality of the system, and the Prandtl number Pthe shear viscosity coefficient, and the thermal conductiv-

In Sec. lll we compare the Boltzmann and molecular-ity coefficient«,. The result ig9]

dynamics results with the predictions made from the differ-

ent approximationgkinetic models and Grad's methpdn _ nkgT

general, the comparison shows a superiority of the kinetic o= pr L @)

models over Grad’s approximation, especially in the case of

the ES model at the level of the thermal conductivity tensor. d+2 nkéT

A few concluding remarks close the paper in Sec. IV. Ko~ "y )

Il. SOLUTION OF THE ELLIPSOIDAL STATISTICAL If we identify v with a given eigenvalue of the linearized
MODEL IN THE COUETTE FLOW Boltzmann collision operator and take=Pt —1/d, then ex-

pressiong7) and (8) coincide with those derived from the

Boltzmann equation in the first Sonine approximatjéh

We describe now the nonlinear problem we are interested

Let us consider a dilute gas enclosed between two parallel

plates in relative motion and kept at different temperatures

planar Couette floyv Let thex axis be parallel to the motion

nd they axis be normal to the plates. We want to compute

the transport properties in a steady state uradbitrary ve-
R 112 _ locity and temperature gradients along théirection. Under

fo(v)=naTH(detA)™= exp(— A ViV)), @ the geometry of the Couette flow, the ES equation reads

A kinetic model is constructed by replacing the compli-
cated Boltzmann collision operatdf f,f] by a simpler col-
lision term that retains the qualitative and average propertieﬁ1
of the trueJ[f,f]. In the case of the ES kinetic mode] j
one replaced[f,f] by J55=—(f—f,), wherev is an ef-
fective collision frequency that can depend on the densit
and temperature and

whered=2,3 refers to the dimensionality of the system,
=[Al—(B/p)P]"%, 1 is the unit tensor,p=mn, A
=(2kgT/m)Pr !, andB=2(Pr 1—1). Herem is the mass
of a particle,kg is the Boltzmann constant,

J
vy gy === To). 9)

In the same way as in previous descriptip8s.0,11, our
interest lies in obtaining the hydrodynamic profiles in the

n:f dvf(v) (2)  bulk region far away from the boundaries. Therefore, instead
of introducing appropriate boundary conditions to E®),
is the local number densit}/=v—u we first assume a given form of the profiles and then verify

their consistency. We expect to describe the state of the gas

1 in the bulk by looking for a consistent solution regardless the
u=- f dv vf(v) ()  actual characterization of the boundaries. Following the
work of Risso and Corderd5], we choosel=v Prt
is the local flow velocity, =nkgT/ 7 as a convenient collision frequency to reduce all

the quantities of the problem with respect to it. Thus let us

m 5 assume that Eq9) admits a consistent solution character-
T= dnke f dvvf(v) (4 ized by the hydrodynamic profiles
is the local temperature, and p=nkgT=const, (10
J
szf dv VVf (5) a—sux=a=const, 11
is the pressure tensor. The quantity Pr is an extra parameter 52 2m
that plays the role of the Prandtl number. It is easy to see that predi s y(a)=const, (12

if Pr=1, f, reduces to the local Maxwellian and one re-

covers the well-known BGK equatidi7]. In contrast to the whereds={(y)dy is a scaled space variable. In termsspf
BGK approximation, the ES collision term involves not only our results are independent of the interaction potential con-
the first five conserved hydrodynamic fields but also the dissidered. Obviously, when one returns to the actual space co-
sipative momentum flux. The other relevant dissipative fluxordinatey, the profiles depend on the interaction law through
is the heat fluxg defined as the dependence of the collision frequencgn the tempera-
ture. Thus, for instance, for repulsive potentials of the form
r=’, venT#, with u=3—(d—1)//. The dimensionless

m
_ 2
q 2 J dvVEVE. © function y(a) (which measures the curvature of the tempera-
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ture profile is a nonlinear function of the reduced shear rate In order to determine/(a) and the corresponding fluxes it
a to be determined by consistency. is sufficient to use the following formal solution to E®):
As stated in the Introduction, the fluxé,, gy, andd,

define the most relevant nonlinear transport coefficients of t—14prt 9 7lf _ i PrK(—po )k o~ ¢
the problem, namely, the generalized shear viscos{), - ' Uy 9s = r(=vy) sk 0
(16)
J
Puw="— ﬂ(a)wux' (13 This solution is consistent with the profil€s0)—(12) if and
only if
the generalized thermal conductivity coefficient(a), kT
P f dv{l,v,v2}f=[n,o,d 5 ] (17)
qy=— Kyy(a) WT, (14

The fulfillment of these conditions requires the evaluation of
and a transport coefficient,,(a), which measures the heat the nonzero elements of th(_a pressure tensor. Since the math-
flux along thex direction induced by the shear flow ematical procedures to verify E¢L7) and to get the trans-

port coefficientg13)—(15) are identical to those employed in

Ref.[8] for the 3D case, here we only quote the final results

ax= —ny(a)@T. (19 and refer the interested reader to the corresponding Appen-
dixes of Ref.[8] for further details.
The evaluation of these three generalized coefficients is the It is convenient to introduce an auxiliary paramefgr
main objective of this papdn2]. related to the shear ratethrough the implicit equation

, [PH(Pr+PIC;) ][ 2F ,+ dFy(Pr+PIiCy)] .
a‘= — — — — — B, 18
PRF3Pr+ F,Pr)+ PrC,(F3Pr+ 2F ;Pr + C2F PP — 2 BF 2F ,PP
0 0 1 0

wherePr=Pr—1, pr3
o= 2er04{4513c:4(|:2+5|=3+8|:4+4|:5)
Ci(B)=2B(F1+2F,)—1, (19
2
andF.,(8)—[(d/dB) 8] Fo(B), where +6 Pra?C,Cq(F,+4F 3+ 4F )+ Pra
5 X[6C3F,+ Cy(Fp+2F3)(2+3C3)+2(d—2)CsF5]
_  past22 — 14112
FolB)=73 fo dtte™ "*Ko(287 1), (20 +PRC4[3CsF 1+ Cy(Fy+2F,)(1+C2)

Ko being the zeroth-order modified Bessel function. The +(d=2)CsF4 ]} (27)

function y(a) that measures the temperature curvafafe

Eq. (12)] is given by In the above equations

y=[1+Pr(1+C,)]PPB. (21) Ca(B)=2BF,—1, (28)
The nonlinear transport coefficients can be written as 1
Cs(B)= — —
n(a)=n0F ,(a), (22) (Pr+PIC,)3(Pr+PrC,)
Kyy(8) = KoF (), (23 X {(PIC,+Pn?[C,Pr(dC,Pr+d Pr+2)
Kxy(@) = — ko®(a), (24) +PIC,(d Pr—1)+Pr(d Pr+1)]
where 7, and ko are given by Eqs(7) and(8), respectively, —a?F3Pr 2PR(Pr+PIC,)}, (29
and
1
PrFo Culp)=———, (30)
Foy= = (25) Pr+C,Pr
(Pr+PrC,)?
Pr a? 1 D
=53 Cs(B)= ——, 31
Fr 2+d y Fos (26) Pr+C,Pr
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FoPr1Pr

Ce(B)=———a. (32 +4+2dJa+0(a%) |, (34)
Pr+C4Pr

Equations(22)—(27), (21), and(18) provide expressions for
the transport coefficients and the hydrodynamic profiles as
implicit functions of the shear rate Although this quantity
is the natural physical independent parameter, from a practi-
cal point of view it is convenient to takg as the indepen-

dent variable since all the unknowns are explicitly expressed F=1-

in terms of it.

Whena=0, one has-,=F,=1 and®=0, so that the
Navier-Stokes transport coefficien{g) and (8) are reob-
tained. Before analyzing the shear-rate dependence of the
transport coefficients, it is worthwhile to consider the limit of
small shear rates, in which case one gets

- 6 Pri(1+2Pn ofal a5
pmlo g &t (@), (39

5 _,Pr(20+4d) + Pr(104+ 22d) — 16— 8d
r

(2+d)2 a’
+0(a%), (36)
4+d)(Pr+1
®=Pr—1%a+0(a3). (37)

Pr2 2prt i i i
_ a2l 1— PR(7+8d)— P52+ 11d Apart from o.btallnmg the nonlinear transport. cpefﬂments,
B 2+d (2+d)2[ ( )= Pr( ) the use of a kinetic model allows one to explicitly get the
velocity distribution functionf(r,v). This quantity, which
2 4 cannot be determined from the Boltzmann equation, provides
+8+4d]Ja“+0(a”) |, (33 _ ,
all the information on the planar Couette flow problem. Fol-
5 4pr2 lowing similar mathematical steps as the ones used in Ref.
r F T ; X
_ 204 B [8], the distribution function can be written af(r,v)
Y= 5742 | 1 g gy Pr(l+2d)—Pr(23+4d) — n(m/2mksT) 20 (&), where
|
\Ij(f): 25(1_+5)d/2(c C )*1/2Cl*d/2ft1dt[2t_(l_5)t2]*(1+d/2) exp — ﬁi
Prieg,| ~ 7% o 1+0Prleg,

1+6

+_—
& 1+6 €

2
+(C 1+ CiCsHE+(d-2)Cy 1

xeXp[ T2 (1-e)t

. 2a5 1-t
+2C6C3 fy §X+m7 .

1( 2a5 1—t
C3

(39

Here (o,t;)=(0,1) if &>0 and to,t;)=[1,2/(1- )] if

¢,<0. Furthermoreg= (m/2kgT) Y2V,

€

T Ey™ %9
and

[2kg\ 21 aT 40

“lmt 7o 40

is a reduced local thermal gradient. The nonlinear depe
dence of¥(£) on the dimensionless gradierande is very

apparent.

IIl. COMPARISON WITH EXACT BOLTZMANN

RESULTS AND MOLECULAR-DYNAMICS SIMULATIONS

As said before, very recently Risso and Cordggphave

tion data with theoretical results derived from Grad's method
of the Boltzmann equation. While they found good agree-
ment for the shear viscosity, the same did not happen in the
case of the thermal conductivity tensor. On the other hand, in
the 3D case, Tij and Sant§4] have obtained corrections to
the Navier-Stokes equations in the limit of small shear rates
from an exact analysis of the Boltzmann equation for Max-
well molecules. Since the calculations presented in the pre-
ceding section are not restricted to a given value of the di-
mensionalityd, now we can compare all the above analytical
and computational predictions with those obtained from the

"BGK (Pr=1) and ES (Pr1-1/d) models. This compari-

son will be useful to assess the reliability of the approximate
methods or kinetic models.

Let us start with a three-dimensional system. In this case,
for small shear rates and taking into account only terms up to
the third (super-Burnejtorder ina, the transport coefficients
can be written asF,(a)=1+F%a?+---, F (a)=1

performed computer molecular-dynamics experiments tot Ff(z)a2+--- , and®(a)=dWa+---, where the numeri-

study the shear-rate dependencé&gf F,, and® for a hard

cal values of the coefficiens{”), F{?), andd™® depend on

disk gas (1=2). Furthermore, they compared their simula-the approximation used.3]. In Table | we show the differ-
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TABLE |. Coefficients F?, F?, and ®® for a three- e
dimensional gas as obtained from the Boltzmann equation for Max- 1.0
well molecules B), from Grad’'s method@), from the Bhatnagar-
Gross-Krook(BGK) model, and from the ellipsoidal statistiq&@S)

model. F, 09T
Coefficient B G BGK ES 0.8
E@ _ 149 _13 _18 _2
7 45 5 5 5
) 7.259 21 162 389 07
F - 50 — % %0
7 7 14 7
oM 2 2 5 2 06 [ 1

ent values of these coefficients according to the Boltzmanr o5 : L . 1 : L . 1 :
equation4], Grad’s method5], and the BGK and ES mod- 00 0.1 02 03 04 05
els. According to the values reported in Table I, we see that

in the case of the shear viscosity, all the approximations FIG. 1. Plot of the reduced nonlinear shear viscosity(a)
predict the correct sign of{?). Further, the relative errors ~ 7(@)/ 7 versus the reduced shear ratdor a hard disk gas as
are around 21% for Grad's method, 26% for the ES model°Pt2ined from molecular-dynamics simulatidaircles, the ES
and 9% in the BGK model. Concerning the thermal Conduc_fnodel(sol_ld ling), Grad's methoddotted ling, and the BGK model
tivity coefficient, in contrast to what happens in the kinetic(daShed ingz

models, Grad’s approximation does not give the correct sign . .

of F@ . At a quantitative level, the BGK model estimates Which approximation is superior. In the case of the heat
Fff) with a deviation of around 11%, while in the ES model transport, 1t is e""?'er?t from Fig. 2 that Grad's solution does
this coefficient is estimated with a deviation of around 7%.nOt estimate qualitatively well the shear-rate dependence of

) L F .. This failure could be anticipated from the comparison
ob (V) K
W'th respect t + both the Grad a_nd ES approximations with the perturbation solution in the 3D case. On the other
give the exact Boltzmann value, while the relative error in

. hand, for the functiorr ,(a), the agreement between the ES
the BGK model is around 20%. : . . .
- nd BGK models and simulation data is excellent, especially
Unfortunately, beyond the small shear rate limit, no exac

results are known, so that the only way to validate the dif- " the ES model where the discrepancies between theory

ferent approximations is to use computer simulation data Tgmd simulation are smaller than 1%. In the case of the BGK
bp omput : . __model, the discrepancies are smaller than 3%. In the case of
the best of our knowledge, the simulation of Risso and Cor-

dero for a two-dimensional dilute g48] is the only com- @, Fig. 3 shows clearly the superiority of the ES model over

puter experiment in which the planar Couette flow problemthe remaining approximations, the discrepancies for this co-

. o efficient being smaller than 6%. Although Grad’s solution
has been studied. Although the Boltzmann equation is Onl)éives the exact asvmptotic valde?). its predictions worsen
valid in the zero-density limit, it is evident that in a ymp 115 P

molecular-dynamics experiment one needs to fix a nOnzergigniﬁcamly as the shear rate increases. On the other hand, in

(but very small average density. As a consequence, the Col_contrast to what happens farandF,., the BGK model does

lisional contributions to the transport coefficients are notnOt provide a good estimate df within the range of shear
strictly zero. This implies that the Boltzmann equation can-
not exactly reproduce the simulation data, although the dis-
crepancies between both can be neglected as the density b
comes very small. In particular, in the simulation of Risso
and Cordero, the fraction of area covered by the disks was
1%, so that, for instance, the nonideal corrections to theg
equation of state are less than 2%. In Figs. 1-3 we show th¢ * 15} i
shear-rate dependence of the dimensionless functgns
F., and ®, respectively, as obtained from simulations
(circles, the ES modelsolid ling), Grad's methoddotted Lo
line), and the BGK mode(dashed ling In the case of the
nonlinear shear viscositifFig. 1) we see that the qualitative
trends predicted by the simulation results are retained by al

the approximations, namely, the viscosity decreases as th

2.5 T T T T T T T T

shear rate increas¢shear thinning effegt At a quantitative 00 R T T T T

level, the kinetic models and Grad’s method present good 0.0 0.1 0.2 03 04 05
agreement with simulation data, especially in the case of the 4

BGK model. For instance, a=0.2 (which is the largest FIG. 2. Plot of the reduced nonlinear thermal conductivity

value considered in the simulatiprthe discrepancies of the F,(a)=«,,(a)/«x, versus the reduced shear ratéor a hard disk
ES model and Grad’s method with the simulation result argyas as obtained from molecular-dynamics simulafigircles, the
less than 3% and less than 2% for the BGK model. For largeES model(solid ling), Grad’s methoddotted ling, and the BGK
shear rates, we would need more simulation data to stat@odel(dashed ling
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FIG. 3. Plot of the reduced nonlinear cross coefficién(a)
= — kxy(@)/ kg versus the reduced shear ratfor a hard disk gas as
obtained from molecular-dynamics simulatidoircley, the ES
model(solid line), Grad’s methoddotted ling, and the BGK model
(dashed ling

FIG. 4. Plot of the marginal distributioR,(¢,) versusé, for
a=1 ande=1. The solid line refers to the ES model, while the
dashed line corresponds to the BGK model.

between two infinite parallel plates and maintained at differ-
ent temperatures. As a consequence, combined heat and mo-
entum transport are induced in the system. Our interest has
een to get the transport properties for arbitrary values of
oth velocity and temperature gradients. Since in this prob-
em the Prandtl number Pr plays a relevant role, we have
used a kinetic mode(ES kinetic model that leads to the
Finally, in spite of the lack of simulation data, it is also COTrect value of Pr. When Prl, the ES model reduces to the

interesting to compare the distribution functions as given byVell-known BGK model. The solution is character-

_ A — 2 2
the several theories. For the sake of illustration, for a twoi28d Dy p=const, du,/ds=a=const, and 9°T/ds

dimensional gas, let us consider the marginal distribution = — (2M/ks) y(a) =const, wheresis a scaled space variable
[Egs. (100—(12)]. We have found that the pressure tensor,

and hence the nonlinear shear viscosj{a) = 7oF ,(a), is
independent of the thermal gradient, while the heat flux veri-
fies a generalized Fourier lagproportional to the thermal
gradien with a shear-rate-dependent thermal conductivity
tensork. The two nonzero elements af are «,,= kP (a)
(which vanishes in the limit of zero shear ratend «y,
=kyF .(a) (which can be interpreted as a generalization of
the thermal conductivity coefficientOur calculations show
thatF,, ®, andF, are highly nonlinear functions of the
shear rate.

The present work has been mainly motivated by a recent
is the local equilibrium distribution function. The distribu- paper of Risso and Corder$5], who use computer
tion Ry(gy) measures the distortion dfwith respect to the molecular-dynamics experiments to study the shear-rate de-
local equilibrium. Notice that in the case of Grad’s theory, pendence of, ,,, andk,, for a hard disk gas. In addition,
R,(£,)=1 and consequently the behavior of Grad’s distribu-Risso and Cordero also derived expressions of such nonlin-
tion f(&) is very close to a Gaussian form. This is not whatear coefficients by using Grad’s method of the Boltzmann
happens in the BGK and ES models, for which Fig. 4 showsquation. In the case of the shear viscosity, the comparison
a high distortion of both distributions from local equilibrium. of the theoretical predictions given by the ES and BGK mod-
Although the shapes of the BGK and ES distributions are irels and Grad's method with the simulation results shows
general similar, we observe significant quantitative differ-good agreement. In the range of shear rates analyzed, the
ences between both distributions, especia”y for |arge angiscrepancies observed are smaller than 3% in the case of the

negative¢,. This could explain the discrepancies observedES and Grad approximations, while for the BGK model the
at the level ofd. discrepancies are smaller than 2%. Nevertheless, in the case

of the coefficientsc,(a) and «,,(a), the discrepancies be-
tween simulation and Grad'’s theory become important. This
is in contrast to what happens in the ES model, where the
In this paper we have considered the state of aagreement is excellent, especially in the casegfwith a
d-dimensional dilute gas subject to steady planar Couetteelative error less than 1%. Although the BGK prediction for
flow. The physical situation corresponds to a gas enclosed,, is very close to that of the ES model, it does not give a

rates considered in the simulations. Thusa&t0.2, the rela-
tive error is around 40%. The fact that the BGK model lead
to significant quantitative discrepancies for the coefficibnt
can justify the use of more sophisticated kinetic model
(such as the ES approximatjom the Couette problem, at
the expense, however, of the simplicity of the model.

| Tasao

Ry(¢,)= , (41)

| Taer=e

where

(42

di2 ,
fLE:n< ) e~ MV/2kgT

27TkBT

IV. CONCLUDING REMARKS
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good estimate ofb since the discrepancies are around 40%are out of equilibrium in a state close to the one of the actual
All these results clearly show that, at least in the range ofjas. The use of this type of condition has been shown to be
shear rates considered in the simulation, the ES model pranore appropriate to analyze bulk transport propeftls in
vides a shear-rate dependence of the transport coefficients {he planar Fourier problertboth walls at rest As a final
the Couette flow problem that is consistent with the observapoint, we want to remark that in spite of the simplicity of the
tions made in the bulk region by Risso and Cordg8¢  kinetic models, the results presented here can be taken as a
Since the Couette flow is essentially two-dimensional, ongood example to assess their reliability in evaluating nonlin-
expects that the above conclusions can be extended to the #3r transport properties. In this context, it would be very
case. The comparison with the perturbation solution of Tijinteresting to investigate whether the good agreement ob-
and Santog4] supports the above expectation. It must beserved here between theory and simulation could be ex-
noticed that, while the choice of unit of time is irrelevant in tended when one considers shear rates |arger than the ones
the case of the ES model, this is not the case for the BGksonsidered by Risso and Cordero. As an alternative to over-
model. In this equation, its collision frequeneycan be ad-  come the difficulties associated with molecular-dynamics
justed to reproduce either the exact Navier-Stokes shear visimulations for achieving very large shear rates in the low-
cosity 779 (v=p/ 70) or the exact Navier-Stokes thermal con- density regime, one could perhaps use the direct simulation
ductivity xo (v=[(d+2)/2]pkg/mk,). While in the former  Monte Carlo methodl15], which has been shown to be very
case the BGK equation presents good agreement with simyryitful in the past few years.
lation results(except in the case @b), we have verified that
the latter choice leads to discrepancies with computer experi-
ments much more important than those obtained here. ACKNOWLEDGMENTS
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