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Nonlinear Couette flow in a dilute gas: Comparison between theory
and molecular-dynamics simulation
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Nonlinear transport properties of ad-dimensional dilute gas subjected to a planar Couette flow are deter-
mined. The results are obtained from a kinetic model that accounts for the correct value of the Prandtl number.
The solution is characterized by constant pressure and linear velocity and parabolic temperature profiles with
respect to a scaled variable. The main transport coefficients are explicitly obtained as nonlinear functions of the
reduced shear rate. A comparison with recent molecular-dynamics simulations of a bidimensional gas of hard
disks@D. Risso and P. Cordero, Phys. Rev. E56, 489~1997!# is carried out. Such a comparison shows that our
results are in better agreement with the computer simulations than those previously derived from other ap-
proximations, especially in the case of the thermal conductivity tensor.@S1063-651X~98!03308-X#

PACS number~s!: 05.20.Dd, 47.50.1d, 51.10.1y, 05.60.1w
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I. INTRODUCTION

The Boltzmann equation provides an adequate framew
to analyze transport phenomena occurring in dilute ga
The standard method of solving it is the Chapman-Ens
series expansion in gradients of the hydrodynamic fie
Nevertheless, this approach is not very useful when one d
with far from equilibrium situations for which, due to th
complexity of the Boltzmann collision term, it is a form
dable task to find exact solutions@1#. This problem has
stimulated in the past the search for alternative approxim
schemes to overcome the above difficulties. In the contex
analytical methods, the use of kinetic models@2# as well as
Grad’s moment expansion method@3# can be considereda
priori as reliable procedures to study such nonlinear tra
port problems. However, it is not evident which approxima
scheme should be used in each case. As a compleme
tool to analytical methods, one can getsemiexperimentalre-
sults from microscopic computational techniques us
molecular-dynamics and/or Monte Carlo simulations.

One of the most interesting problems for which the ex
solution of the Boltzmann equation is not known is t
steady planar Couette flow. It corresponds to a gas betw
two parallel plates in relative motion and kept, in general
different temperatures. These boundary conditions lead
combined heat and momentum transport so that the rele
fluxes are the pressure tensorP and the heat flux vectorq.
From the knowledge of the above fluxes, one can identify
main transport coefficients of the problem, namely, the sh
viscosity coefficienth and the nonzero elements of the the
mal conductivity tensork. In the context of the Boltzmann
equation and for a three-dimensional~3D! gas of Maxwell
molecules, Tij and Santos@4# have obtained the above coe
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PRE 581063-651X/98/58~2!/1836~7!/$15.00
rk
s.
g
s.
als

te
of

s-

ary

g

t

en
t
to
nt

e
ar

ficients by using a perturbation expansion in powers of
shear rate up to the super-Burnett approximation. Moreo
very recently Risso and Cordero@5# have explicitly evalu-
atedh andk in the case of a 2D gas of hard disks by app
ing Grad’s method to the Boltzmann equation. Beyond
Navier-Stokes regime, they found that these coefficients t
out to be highly nonlinear functions of the~dimensionless!
shear rate. In addition, and in order to validate their anal
cal predictions, they have also performed molecul
dynamics simulations. The comparison shows good ag
ment for the nonlinear shear viscosity in the range of sh
rates considered while the discrepancies become importa
the case of the thermal conductivity tensor, especially wh
the shear rate is large. Given this fact, a natural questio
whether the above analytical predictions could be improv
if one uses a suitable kinetic model.

The aim of this paper is to analyze the transport proper
of the Couette flow state by starting from the so-called ell
soidal statistical~ES! kinetic model@6#. In this model, the
Boltzmann collision term is replaced by a simpler o
J@ f , f #→n( f 02 f ), wheref 0 is an anisotropic Gaussian tha
involves the pressure tensor and the Prandtl number Pr.
quantity can be considered as an extra parameter~apart from
the collision frequencyn! to be adjusted to give the sam
Navier-Stokes transport coefficients as those obtained f
the Boltzmann equation. That happens if Pr5 2

3 in the 3D
case or Pr5 1

2 in the 2D case@6#. Besides, if Pr51, one
recovers the well-known Bhatnagar-Gross-Krook~BGK!
model@7#, so that the latter can be considered as a partic
case of the ES model. The goal is to solve the ES model
a d-dimensional system subjected to the planar Couette fl
This study extends previous results obtained in the Cou
flow for the 3D case by using the ES model@8#. Now, our
main motivation is to compare the results derived from
ES and BGK models and from Grad’s solution with tho
obtained in the Boltzmann equation from a perturbation
pansion~3D case! @4# and from molecular-dynamics simula
tions for hard disks@5#. This comparison allows one to infe
1836 © 1998 The American Physical Society
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PRE 58 1837NONLINEAR COUETTE FLOW IN A DILUTE GAS: . . .
the degree of reliability of thenonlinear transport coeffi-
cients obtained from the different approximations.

The plan of the paper is as follows. In Sec. II we solve
ES model in the steady planar Couette flow. We prov
explicit expressions of the relevant transport coefficients
the problem in terms of the shear rate, the thermal gradi
the dimensionality of the system, and the Prandtl number
In Sec. III we compare the Boltzmann and molecul
dynamics results with the predictions made from the diff
ent approximations~kinetic models and Grad’s method!. In
general, the comparison shows a superiority of the kin
models over Grad’s approximation, especially in the case
the ES model at the level of the thermal conductivity tens
A few concluding remarks close the paper in Sec. IV.

II. SOLUTION OF THE ELLIPSOIDAL STATISTICAL
MODEL IN THE COUETTE FLOW

A kinetic model is constructed by replacing the comp
cated Boltzmann collision operatorJ@ f , f # by a simpler col-
lision term that retains the qualitative and average proper
of the trueJ@ f , f #. In the case of the ES kinetic model@6#
one replacesJ@ f , f # by JES[2n( f 2 f 0), wheren is an ef-
fective collision frequency that can depend on the den
and temperature and

f 0~v!5np2d/2~det L!1/2 exp~2L i j ViVj !, ~1!

whered52,3 refers to the dimensionality of the system,L
5@A12(B/r)P#21, 1 is the unit tensor, r5mn, A
5(2kBT/m)Pr21, andB52(Pr2121). Herem is the mass
of a particle,kB is the Boltzmann constant,

n5E dvf ~v! ~2!

is the local number density,V5v2u,

u5
1

n E dv vf ~v! ~3!

is the local flow velocity,

T5
m

dnkB
E dvV2f ~v! ~4!

is the local temperature, and

P5mE dv VV f ~5!

is the pressure tensor. The quantity Pr is an extra param
that plays the role of the Prandtl number. It is easy to see
if Pr51, f 0 reduces to the local Maxwellian and one r
covers the well-known BGK equation@7#. In contrast to the
BGK approximation, the ES collision term involves not on
the first five conserved hydrodynamic fields but also the d
sipative momentum flux. The other relevant dissipative fl
is the heat fluxq defined as

q5
m

2 E dv V2V f . ~6!
e
e
f
t,
r.
-
-
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of
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The ES model can be seen as an extension of the sim
BGK model to account for the correct Prandtl number. T
can be particularly important in situations where combin
heat and momentum transport occur, as it is the case
steady Couette flow. In the ES model, it is straightforward
evaluate the Navier-Stokes transport coefficients, nam
the shear viscosity coefficienth0 and the thermal conductiv
ity coefficientk0 . The result is@9#

h05
nkBT

nPr21 , ~7!

k05
d12

2

nkB
2T

mn
. ~8!

If we identify n with a given eigenvalue of the linearize
Boltzmann collision operator and take Pr5121/d, then ex-
pressions~7! and ~8! coincide with those derived from th
Boltzmann equation in the first Sonine approximation@6#.

We describe now the nonlinear problem we are interes
in. Let us consider a dilute gas enclosed between two par
plates in relative motion and kept at different temperatu
~planar Couette flow!. Let thex axis be parallel to the motion
and they axis be normal to the plates. We want to compu
the transport properties in a steady state underarbitrary ve-
locity and temperature gradients along they direction. Under
the geometry of the Couette flow, the ES equation reads

vy

]

]y
f 52n~ f 2 f 0!. ~9!

In the same way as in previous descriptions@8,10,11#, our
interest lies in obtaining the hydrodynamic profiles in t
bulk region far away from the boundaries. Therefore, inste
of introducing appropriate boundary conditions to Eq.~9!,
we first assume a given form of the profiles and then ve
their consistency. We expect to describe the state of the
in the bulk by looking for a consistent solution regardless
actual characterization of the boundaries. Following
work of Risso and Cordero@5#, we choosez5n Pr21

5nkBT/h0 as a convenient collision frequency to reduce
the quantities of the problem with respect to it. Thus let
assume that Eq.~9! admits a consistent solution characte
ized by the hydrodynamic profiles

p5nkBT5const, ~10!

]

]s
ux5a5const, ~11!

]2

]s2 T52
2m

kB
g~a!5const, ~12!

whereds5z(y)dy is a scaled space variable. In terms ofs,
our results are independent of the interaction potential c
sidered. Obviously, when one returns to the actual space
ordinatey, the profiles depend on the interaction law throu
the dependence of the collision frequencyn on the tempera-
ture. Thus, for instance, for repulsive potentials of the fo
r 2l , n}nTm, with m5 1

2 2(d21)/l . The dimensionless
functiong(a) ~which measures the curvature of the tempe
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1838 PRE 58J. M. MONTANERO AND V. GARZÓ
ture profile! is a nonlinear function of the reduced shear r
a to be determined by consistency.

As stated in the Introduction, the fluxesPxy , qy , andqx
define the most relevant nonlinear transport coefficients
the problem, namely, the generalized shear viscosityh(a),

Pxy52h~a!
]

]y
ux , ~13!

the generalized thermal conductivity coefficientkyy(a),

qy52kyy~a!
]

]y
T, ~14!

and a transport coefficientkxy(a), which measures the hea
flux along thex direction induced by the shear flow

qx52kxy~a!
]

]y
T. ~15!

The evaluation of these three generalized coefficients is
main objective of this paper@12#.
h

e

f

he

In order to determineg(a) and the corresponding fluxes
is sufficient to use the following formal solution to Eq.~9!:

f 5S 11Pr21vy

]

]sD
21

f 05 (
k50

`

Pr2k~2vy!k
]k

]sk f 0 .

~16!

This solution is consistent with the profiles~10!–~12! if and
only if

E dv$1,V,V2% f 5H n,0,d
nkBT

m J . ~17!

The fulfillment of these conditions requires the evaluation
the nonzero elements of the pressure tensor. Since the m
ematical procedures to verify Eq.~17! and to get the trans
port coefficients~13!–~15! are identical to those employed i
Ref. @8# for the 3D case, here we only quote the final resu
and refer the interested reader to the corresponding App
dixes of Ref.@8# for further details.

It is convenient to introduce an auxiliary parameterb,
related to the shear ratea through the implicit equation
a25
@Pr~Pr1PrC1!#2@2F21dF1~Pr1PrC1!#

Pr~F0
2Pr1F1Pr!1PrC1~F0

2Pr12F1Pr!1C1
2F1Pr222bF0

2F2Pr2
b, ~18!
wherePr5Pr21,

C1~b!52b~F112F2!21, ~19!

andFr(b)5@(d/db)b# rF0(b), where

F0~b!5
2

b E
0

`

dtte2t 2/ 2K0~2b21/4t1/2!, ~20!

K0 being the zeroth-order modified Bessel function. T
function g(a) that measures the temperature curvature@cf.
Eq. ~12!# is given by

g5@11Pr~11C1!#Pr2b. ~21!

The nonlinear transport coefficients can be written as

h~a!5h0Fh~a!, ~22!

kyy~a!5k0Fk~a!, ~23!

kxy~a!52k0F~a!, ~24!

whereh0 andk0 are given by Eqs.~7! and~8!, respectively,
and

Fh5
Pr2F0

~Pr1PrC1!2
, ~25!

Fk5
Pr

21d

a2

g
Fh , ~26!
e

F5
Pr23

21d
C4$4a3C4~F215F318F414F5!

16 Pra2C4C6~F214F314F4!1Pr2a

3@6C3F21C4~F212F3!~213C6
2!12~d22!C5F2#

1Pr3C6@3C3F11C4~F112F2!~11C6
2!

1~d22!C5F1#%. ~27!

In the above equations

C2~b!52bF121, ~28!

C3~b!5
1

~Pr1PrC1!3~Pr1PrC2!

3$~PrC11Pr!2@C1Pr~dC2Pr1d Pr12!

1PrC2~d Pr21!1Pr~d Pr11!#

2a2F0
2Pr22Pr2~Pr1PrC2!%, ~29!

C4~b!5
1

Pr1C1Pr
, ~30!

C5~b!5
1

Pr1C2Pr
, ~31!



r
a

c

se

t
of

ts,
he

des
ol-

ef.

PRE 58 1839NONLINEAR COUETTE FLOW IN A DILUTE GAS: . . .
C6~b!5
F0Pr21Pr

Pr1C1Pr
a. ~32!

Equations~22!–~27!, ~21!, and ~18! provide expressions fo
the transport coefficients and the hydrodynamic profiles
implicit functions of the shear ratea. Although this quantity
is the natural physical independent parameter, from a pra
cal point of view it is convenient to takeb as the indepen-
dent variable since all the unknowns are explicitly expres
in terms of it.

When a50, one hasFh5Fk51 andF50, so that the
Navier-Stokes transport coefficients~7! and ~8! are reob-
tained. Before analyzing the shear-rate dependence of
transport coefficients, it is worthwhile to consider the limit
small shear rates, in which case one gets

b5
Pr22

21d
a2H 12

2 Pr21

~21d!2 @Pr2~718d!2Pr~52111d!

1814d#a21O~a4!J , ~33!

g5
Pr

21d
a2H 12

4 Pr22

~21d!2 @Pr2~112d!2Pr~2314d!
e

t

la-
s

ti-

d

he

1412d#a21O~a4!J , ~34!

Fh512
6 Pr21~112 Pr!

21d
a21O~a4!, ~35!

Fk512Pr22
Pr2~2014d!1Pr~104122d!21628d

~21d!2 a2

1O~a4!, ~36!

F5Pr21
~41d!~Pr11!

21d
a1O~a3!. ~37!

Apart from obtaining the nonlinear transport coefficien
the use of a kinetic model allows one to explicitly get t
velocity distribution functionf (r ,v). This quantity, which
cannot be determined from the Boltzmann equation, provi
all the information on the planar Couette flow problem. F
lowing similar mathematical steps as the ones used in R
@8#, the distribution function can be written asf (r ,v)
5n(m/2pkBT)d/2C(j), where
C~j!5
2d~11d!d/2

Pr21eujyu
~C3C4!21/2C5

12d/2E
t0

t1
dt@2t2~12d!t2#2~11d/2! expS 2

2d

11d

12t

Pr21ejy
D

3expH 2
11d

2t2~12d!t2 Fc3
21S jx1

2ad

11d

12t

e D 2

1~C4
211C6

2C3
21!jy

21~d22!C5
21jz

2

12C6C3
21jyS jx1

2ad

11d

12t

e D G J . ~38!
od
e-
the
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se,
p to
Here (t0 ,t1)[(0,1) if jy.0 and (t0 ,t1)[@1,2/(12d)# if
jy,0. Furthermore,j5(m/2kBT)1/2V,

d5
e

~e218g!1/2, ~39!

and

e5S 2kB

mTD 1/21

z

]T

]y
~40!

is a reduced local thermal gradient. The nonlinear dep
dence ofC~j! on the dimensionless gradientsa ande is very
apparent.

III. COMPARISON WITH EXACT BOLTZMANN
RESULTS AND MOLECULAR-DYNAMICS SIMULATIONS

As said before, very recently Risso and Cordero@5# have
performed computer molecular-dynamics experiments
study the shear-rate dependence ofFh , Fk , andF for a hard
disk gas (d52). Furthermore, they compared their simu
n-

o

tion data with theoretical results derived from Grad’s meth
of the Boltzmann equation. While they found good agre
ment for the shear viscosity, the same did not happen in
case of the thermal conductivity tensor. On the other hand
the 3D case, Tij and Santos@4# have obtained corrections t
the Navier-Stokes equations in the limit of small shear ra
from an exact analysis of the Boltzmann equation for Ma
well molecules. Since the calculations presented in the p
ceding section are not restricted to a given value of the
mensionalityd, now we can compare all the above analytic
and computational predictions with those obtained from
BGK (Pr51) and ES (Pr5121/d) models. This compari-
son will be useful to assess the reliability of the approxim
methods or kinetic models.

Let us start with a three-dimensional system. In this ca
for small shear rates and taking into account only terms u
the third~super-Burnett! order ina, the transport coefficients
can be written asFh(a)511Fh

(2)a21¯ , Fk(a)51
1Fk

(2)a21¯ , andF(a)5F (1)a1¯ , where the numeri-
cal values of the coefficientsFh

(2) , Fk
(2) , andF (1) depend on

the approximation used@13#. In Table I we show the differ-
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1840 PRE 58J. M. MONTANERO AND V. GARZÓ
ent values of these coefficients according to the Boltzm
equation@4#, Grad’s method@5#, and the BGK and ES mod
els. According to the values reported in Table I, we see
in the case of the shear viscosity, all the approximatio
predict the correct sign ofFh

(2) . Further, the relative error
are around 21% for Grad’s method, 26% for the ES mod
and 9% in the BGK model. Concerning the thermal cond
tivity coefficient, in contrast to what happens in the kine
models, Grad’s approximation does not give the correct s
of Fk

(2) . At a quantitative level, the BGK model estimat
Fk

(2) with a deviation of around 11%, while in the ES mod
this coefficient is estimated with a deviation of around 7
With respect toF (1), both the Grad and ES approximation
give the exact Boltzmann value, while the relative error
the BGK model is around 20%.

Unfortunately, beyond the small shear rate limit, no ex
results are known, so that the only way to validate the d
ferent approximations is to use computer simulation data.
the best of our knowledge, the simulation of Risso and C
dero for a two-dimensional dilute gas@5# is the only com-
puter experiment in which the planar Couette flow probl
has been studied. Although the Boltzmann equation is o
valid in the zero-density limit, it is evident that in
molecular-dynamics experiment one needs to fix a nonz
~but very small! average density. As a consequence, the c
lisional contributions to the transport coefficients are n
strictly zero. This implies that the Boltzmann equation ca
not exactly reproduce the simulation data, although the
crepancies between both can be neglected as the densit
comes very small. In particular, in the simulation of Ris
and Cordero, the fraction of area covered by the disks
1%, so that, for instance, the nonideal corrections to
equation of state are less than 2%. In Figs. 1–3 we show
shear-rate dependence of the dimensionless functionsFh ,
Fk , and F, respectively, as obtained from simulatio
~circles!, the ES model~solid line!, Grad’s method~dotted
line!, and the BGK model~dashed line!. In the case of the
nonlinear shear viscosity~Fig. 1! we see that the qualitativ
trends predicted by the simulation results are retained by
the approximations, namely, the viscosity decreases as
shear rate increases~shear thinning effect!. At a quantitative
level, the kinetic models and Grad’s method present g
agreement with simulation data, especially in the case of
BGK model. For instance, ata.0.2 ~which is the largest
value considered in the simulation!, the discrepancies of th
ES model and Grad’s method with the simulation result
less than 3% and less than 2% for the BGK model. For lar
shear rates, we would need more simulation data to s

TABLE I. Coefficients Fh
(2) , Fk

(2) , and F (1) for a three-
dimensional gas as obtained from the Boltzmann equation for M
well molecules (B), from Grad’s method (G), from the Bhatnagar-
Gross-Krook~BGK! model, and from the ellipsoidal statistical~ES!
model.

Coefficient B G BGK ES

Fh
(2) 2

149
45 2

13
5 2

18
5 2

21
5

Fk
(2) 27.259 21

50 2
162
25 2

389
50

F (1) 7
2

7
2

14
5

7
2
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which approximation is superior. In the case of the h
transport, it is evident from Fig. 2 that Grad’s solution do
not estimate qualitatively well the shear-rate dependenc
Fk . This failure could be anticipated from the comparis
with the perturbation solution in the 3D case. On the oth
hand, for the functionFk(a), the agreement between the E
and BGK models and simulation data is excellent, especi
for the ES model where the discrepancies between the
and simulation are smaller than 1%. In the case of the B
model, the discrepancies are smaller than 3%. In the cas
F, Fig. 3 shows clearly the superiority of the ES model ov
the remaining approximations, the discrepancies for this
efficient being smaller than 6%. Although Grad’s solutio
gives the exact asymptotic valueF (1), its predictions worsen
significantly as the shear rate increases. On the other han
contrast to what happens forh andFk , the BGK model does
not provide a good estimate ofF within the range of shea

x-

FIG. 1. Plot of the reduced nonlinear shear viscosityFh(a)
5h(a)/h0 versus the reduced shear ratea for a hard disk gas as
obtained from molecular-dynamics simulation~circles!, the ES
model~solid line!, Grad’s method~dotted line!, and the BGK model
~dashed line!.

FIG. 2. Plot of the reduced nonlinear thermal conductiv
Fk(a)5kyy(a)/k0 versus the reduced shear ratea for a hard disk
gas as obtained from molecular-dynamics simulation~circles!, the
ES model~solid line!, Grad’s method~dotted line!, and the BGK
model ~dashed line!.
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rates considered in the simulations. Thus, ata.0.2, the rela-
tive error is around 40%. The fact that the BGK model lea
to significant quantitative discrepancies for the coefficienF
can justify the use of more sophisticated kinetic mod
~such as the ES approximation! in the Couette problem, a
the expense, however, of the simplicity of the model.

Finally, in spite of the lack of simulation data, it is als
interesting to compare the distribution functions as given
the several theories. For the sake of illustration, for a tw
dimensional gas, let us consider the marginal distribution

Ry~jy![

E
2`

1`

djxf ~j!

E
2`

1`

djxf LE~j!

, ~41!

where

f LE5nS m

2pkBTD d/2

e2mV2/2kBT ~42!

is the local equilibrium distribution function. The distribu
tion Ry(jy) measures the distortion off with respect to the
local equilibrium. Notice that in the case of Grad’s theo
Ry(jy)51 and consequently the behavior of Grad’s distrib
tion f (j) is very close to a Gaussian form. This is not wh
happens in the BGK and ES models, for which Fig. 4 sho
a high distortion of both distributions from local equilibrium
Although the shapes of the BGK and ES distributions are
general similar, we observe significant quantitative diff
ences between both distributions, especially for large
negativejy . This could explain the discrepancies observ
at the level ofF.

IV. CONCLUDING REMARKS

In this paper we have considered the state of
d-dimensional dilute gas subject to steady planar Cou
flow. The physical situation corresponds to a gas enclo

FIG. 3. Plot of the reduced nonlinear cross coefficientF(a)
52kxy(a)/k0 versus the reduced shear ratea for a hard disk gas as
obtained from molecular-dynamics simulation~circles!, the ES
model~solid line!, Grad’s method~dotted line!, and the BGK model
~dashed line!.
s

s

y
-

,
-
t
s

n
-
d

d

a
te
d

between two infinite parallel plates and maintained at diff
ent temperatures. As a consequence, combined heat and
mentum transport are induced in the system. Our interest
been to get the transport properties for arbitrary values
both velocity and temperature gradients. Since in this pr
lem the Prandtl number Pr plays a relevant role, we h
used a kinetic model~ES kinetic model! that leads to the
correct value of Pr. When Pr51, the ES model reduces to th
well-known BGK model. The solution is characte
ized by p5const, ]ux /]s5a5const, and ]2T/]s2

52(2m/kB)g(a)5const, wheres is a scaled space variabl
@Eqs. ~10!–~12!#. We have found that the pressure tens
and hence the nonlinear shear viscosityh(a)5h0Fh(a), is
independent of the thermal gradient, while the heat flux ve
fies a generalized Fourier law~proportional to the therma
gradient! with a shear-rate-dependent thermal conductiv
tensork. The two nonzero elements ofk arekxy5k0F(a)
~which vanishes in the limit of zero shear rate! and kyy
5k0Fk(a) ~which can be interpreted as a generalization
the thermal conductivity coefficient!. Our calculations show
that Fh , F, and Fk are highly nonlinear functions of the
shear rate.

The present work has been mainly motivated by a rec
paper of Risso and Cordero@5#, who use computer
molecular-dynamics experiments to study the shear-rate
pendence ofh, kxy , andkyy for a hard disk gas. In addition
Risso and Cordero also derived expressions of such non
ear coefficients by using Grad’s method of the Boltzma
equation. In the case of the shear viscosity, the compar
of the theoretical predictions given by the ES and BGK mo
els and Grad’s method with the simulation results sho
good agreement. In the range of shear rates analyzed
discrepancies observed are smaller than 3% in the case o
ES and Grad approximations, while for the BGK model t
discrepancies are smaller than 2%. Nevertheless, in the
of the coefficientskyy(a) andkxy(a), the discrepancies be
tween simulation and Grad’s theory become important. T
is in contrast to what happens in the ES model, where
agreement is excellent, especially in the case ofkyy with a
relative error less than 1%. Although the BGK prediction f
kyy is very close to that of the ES model, it does not give

FIG. 4. Plot of the marginal distributionRy(jy) versusjy for
a51 and e51. The solid line refers to the ES model, while th
dashed line corresponds to the BGK model.
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good estimate ofF since the discrepancies are around 40
All these results clearly show that, at least in the range
shear rates considered in the simulation, the ES model
vides a shear-rate dependence of the transport coefficien
the Couette flow problem that is consistent with the obser
tions made in the bulk region by Risso and Cordero@5#.
Since the Couette flow is essentially two-dimensional, o
expects that the above conclusions can be extended to th
case. The comparison with the perturbation solution of
and Santos@4# supports the above expectation. It must
noticed that, while the choice of unit of time is irrelevant
the case of the ES model, this is not the case for the B
model. In this equation, its collision frequencyn can be ad-
justed to reproduce either the exact Navier-Stokes shear
cosityh0 (n5p/h0) or the exact Navier-Stokes thermal co
ductivity k0 „n5@(d12)/2#pkB /mk0…. While in the former
case the BGK equation presents good agreement with s
lation results~except in the case ofF!, we have verified that
the latter choice leads to discrepancies with computer exp
ments much more important than those obtained here.

On the other hand, apart from density effects, it is p
sible that the differences observed between theory and s
lation could be also in part due to boundary effects that h
not been completely eliminated in the bulk region. In t
simulation of Risso and Cordero@5#, the gas can be seen a
enclosed between two baths at local equilibrium at the sa
temperature and different velocities. A possible way to
hibit the boundary effects could be to assume that both b
,
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are out of equilibrium in a state close to the one of the act
gas. The use of this type of condition has been shown to
more appropriate to analyze bulk transport properties@14# in
the planar Fourier problem~both walls at rest!. As a final
point, we want to remark that in spite of the simplicity of th
kinetic models, the results presented here can be taken
good example to assess their reliability in evaluating non
ear transport properties. In this context, it would be ve
interesting to investigate whether the good agreement
served here between theory and simulation could be
tended when one considers shear rates larger than the
considered by Risso and Cordero. As an alternative to o
come the difficulties associated with molecular-dynam
simulations for achieving very large shear rates in the lo
density regime, one could perhaps use the direct simula
Monte Carlo method@15#, which has been shown to be ver
fruitful in the past few years.
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